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Abstract

In this study, an inverse radiation analysis is presented for the estimation of the radiation properties for an absorbing, emitting,
and scattering media with diffusely emitting and reflecting opaque boundaries. The repulsive particle swarm optimization (RPSO)
algorithm, which is a relatively recent heuristic search method, is proposed as an effective method for improving the search efficiency
for unknown radiative parameters. To verify the performance of the RPSO algorithm, it is compared with a basic particle swarm
optimization (PSO) algorithm and a hybrid genetic algorithm (HGA) for the inverse radiation problem in estimating the various
radiation properties in a two-dimensional irregular medium, when the temperatures are given at only four measurement positions.
A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.
RPSO is proven to be quite a robust tool for simultaneous estimation of multi-parameters even in a strongly-coupled
environment.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the inverse heat transfer analyses pro-
vide a great advantage where desired quantities are not
possible to be measured directly from experiments, for
example, high surface temperatures on a reentry vehicle
or thermal properties of hot gas during combustion,
etc. [1]. Especially for inverse radiation analyses, many
studies have been concerned with the determination of
the radiation properties, boundary condition and temper-
ature profile or source term distribution, given various
types of radiation measurements [2–4]. Unfortunately
the solution obtained from inverse analyses may neither
exist, nor be unique. Using given measurement data with
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some error, the inverse problems cannot be directly
solved. Therefore, various mathematical methods have
been adopted to obtain a stable solution in spite of the
ill-posed characteristic of inverse problem. Among them,
the conjugate gradient method (CGM) has usually been
adopted by many researchers in inverse heat problems
[5–7]. The CGM has an advantage of stably estimating
the solutions in relatively short computational time, but
complex mathematical equations such as sensitivity and
adjoint problems should be additionally solved together.
Also, the unfeasible solutions can be obtained if initial
values are not guessed properly or if the parameters
are highly correlated, the iteration number for the
parameter estimation increases until they converge [8].
As an alternative to gradient-based methods, search-
based methods, such as genetic algorithm (GA) and par-
ticle swarm optimization (PSO) have received much
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Nomenclature

am
I coefficient of discretization equation

bm
P source in discretization equation

ci acceleration coefficient
Dm

ci directional weights
Eb blackbody emissive power, W/m2

I radiation intensity, W/(m2 sr)
M number of total radiation direction
~ni unit normal vector at surface i

Pj( ) Legendre polynomial of order j

pk
i local best position of ith particle at k

pk
g global best position of swarm at k

qR radiative heat flux, W/m2

ri uniform random number [0,1]
Snr volumetric heat source, W/m3

Smn
R source term in FVM

s distance traveled by a ray, m
~s unit direction vector
T temperature, K
vk

i velocity of ith particle at iteration k

vr random velocity
w inertia weight
xk

i position of ith particle at iteration k

Greek symbols

b0 extinction coefficient, m�1

DAi surface area of the ith control surface
DV volume of the control volume
DX control angle, sr
ew wall emissivity
h polar angle, rad
ja absorption coefficient, m�1

l,g direction cosines
r Stefan–Boltzmann constant, 5.67 � 10�8 W/

(m2 K4)
rs scattering coefficient, m�1

U scattering phase function, sr�1

/ azimuthal angle
W scattering angle between~s0,~s
X solid angle, sr
x0 single scattering albedo

Superscripts

k number of iteration
mn radiation direction

Subscripts

i ith particle
P calculating nodal point
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attention for outstanding characteristics, especially in
non-linear or multi-parameter problems. Li and Yang
used GA in inverse radiation analysis for estimating
the scattering albedo, optical thickness and phase func-
tion in parallel plane [9], while Kim et al. estimated wall
emissivities with hybrid genetic algorithm [10]. Becceneri
et al. implemented PSO for estimating radiative proper-
ties in a 1D plane-parallel participating medium [11].
Although these methods have been successfully applied
to various inverse problems with high computing
resources recently, it still takes a longer computing time
than gradient-based methods.

In this study, to solve efficiently the inverse problems
which are highly non-linear, non-monotonic, or a very
complex form, the repulsive particle swarm optimization
(RPSO) is adopted as a fast, robust and stable inverse
method rather than the other search-based ones. To ver-
ify the feasibility and the performance of RPSO, it is
applied to inverse radiation analysis in estimating the
wall emissivities, absorption and scattering coefficients
in a 2D absorbing, emitting and scattering irregular med-
ium with measured temperatures. Also, the accuracy of
estimated parameters and the computational efficiency
are compared with the results obtained from HGA and
PSO techniques.
2. Principle of algorithm

2.1. Hybrid genetic algorithm (HGA)

Genetic algorithm (GA) is a well known global optimi-
zation technique based on the Darwin’s principle of the
‘survival of the fittest’ and the natural process of evolution
[12]. Generally, it starts with a randomly generated popula-
tion of candidate solutions (individuals) within some
ranges and then exchanges genetic information between
individuals to reproduce improved solutions from one gen-
eration to the next by three simulated evolution processes,
which are selection, crossover and mutation. By repeating
them, the better individuals are reproduced while the bad
ones are extinguished at each generation. If a desirable fit-
ness of an object function is obtained, then the best individ-
uals of the last generation are regarded as the final
solution. Based on its ability to reach global optima, the
GA has been extensively applied in many engineering fields
such as optimization and fuzzy logic control [13,14].

However, the GA has some drawbacks such as inability
to perform fine local tuning due to its poor exploitation, a
premature convergence to a non-global optimum and a
longer computing time. Also, a proper selection of popula-
tion size, crossover and mutation probabilities, and the
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Fig. 1. The flowchart of search-based algorithm.
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maximum number of generations is required because they
greatly affect the performance of GA. To overcome these
difficulties, an elitist strategy and a local optimization algo-
rithm (LOA) are combined with a simple GA, which is
thereby so-called hybrid genetic algorithm (HGA). The
elitist strategy ensures monotonic improvement in the best
fitness value of each generation and helps to reach near the
global optima while LOA helps faster converge to them.
The LOA is applied to only elite individual to reduce com-
putation time after determining the elite individual. If
s ¼ hv1; v2; . . . ; vmi is a chromosome of elite individual
and the gene vk is selected for local optimization, the result-
ing gene v0k is as follows:

v0k ¼
vk þ Dðt;UB� vkÞ
vk � Dðt; vk � LBÞ

�
ð1Þ

The function D(t,y) returns a value in the range [0,y] such
that the probability of D(t,y), being close to 0, increases as t

increases. The following function is used for D(t,y)

Dðt; yÞ ¼ y � 1� r 1� t
T maxð Þb

� �
ð2Þ

where r is a uniform random number, Tmax is the maximum
generation number, and b is a system parameter for deter-
mining the degree of dependency on generation number, t
(b = 1 here). In LOA, using Eq. (1) v0k is calculated for each
gene of elite individual. If v0k is fitter than vk, gene of elite
individual is changed to v0k. Otherwise, vk is maintained.
A more detailed description of HGA can be found in
Ref. [10], and its flowchart is presented in Fig. 1(a).

2.2. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a recent high per-
formance algorithm created as an alternative to the GA. It
is based on the social behavior of a swarm of birds or a
school of fish which searches for food in a very typical
manner. If an individual of the swarm sees a desirable path
to go, the rest will follow quickly. Every member of the
swarm searches for the best in its locality-learns from its
own experience. Additionally, each member learns from
the others, typically from the best performer among them
[15]. The PSO consists of three steps, namely, generating
positions and velocities of particles, velocity update, and
finally, position update. The flowchart of PSO is presented
in Fig. 1(b) and its detailed procedures are as follows:

(1) Randomly initialize the velocities and the positions
of all particles within expected ranges.

(2) At current kth iteration, the velocity of ith particle for next
iteration is updated according to following equation:
vkþ1
i ¼ wvk

i þ c1r1ðpk
i � xk

i Þ þ c2r2ðpk
g � xk

i Þ ð3Þ
where xk
i and vk

i are the position and velocity of par-
ticle i. pk

i and pk
g are the positions with the best objec-

tive value found so far by particle i and by all
particles, which are called the local and the global
best position, respectively. w is an inertia factor
which controls the flying dynamics, ri, r2 are uniform
random variables in the range [0, 1]. Also c1,c2 are
acceleration coefficients that pull each particle to-
ward the local and the global best positions. From
Eq. (3), the current and the best information of par-
ticle and swarm are considered all together to update
velocities of all particles for next iteration, which are
totally different from GA.
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(3) Finally, after updating the position of each particle
using its new velocity for unit time by
xkþ1
i ¼ xk

i þ vkþ1
i ð4Þ
(4) Repeat the velocity update, position update, and fit-
ness calculations until meeting a desired convergence
criterion (a sufficiently good fitness or a maximum
number of iterations).

Similar to GA, the PSO is firstly initialized in a set of
randomly generated potential solutions (particles), and
then iteratively performs the search for the optimum one.
But unlike GA, every particle flies through the search space
with velocity which is dynamically adjusted according to its
own and companions’ flying. Namely, the particles have a
tendency to fly towards the better and better search area
without using the complex techniques of GA. Compared
to GA, the PSO is much simpler, can be easily imple-
mented, has fewer parameters to adjust and is computa-
tionally inexpensive since its memory and CPU speed
requirements are low [16]. Furthermore, it does not require
gradient information of the objective function. Based on
these advantages, the PSO has been successfully applied
to solve a lot of practical applications such as function
optimization, artificial neural network training, pattern
recognition, fuzzy control and some other fields in recent
years [17].
: measurement point

(0.5, 1.0)

(1.5, 1.2)

(2.2, 0)(0, 0)

Fig. 2. Schematic of the physical system and the position of four
measurement points.
2.3. Repulsive particle swarm optimization (RPSO)

Despite the above advantages, the PSO can stop evolu-
tion and rather fall into premature convergence especially
for complex problems with many local optima and optimi-
zation parameters [18]. Therefore, various variant models
of PSO have been developed recently to improve its perfor-
mance, and to increase the diversity of particles of the ori-
ginal PSO [19]. Among such variants, the repulsive particle
swarm optimization (RPSO) method, which is developed to
implement the repulsion between particles, is particularly
effective in finding out the global optimum in very complex
search spaces. The main difference between PSO and RPSO
is the propagation mechanism to determine new velocity
for a particle as follows:

vkþ1
i ¼ wvk

i þ c1r1ðpk
i � xk

i Þ þ c2r2wðpk
j � xk

i Þ þ c3r3wvr ð5Þ

where pk
i is the local best position of particle i, and pk

j is the
local best position of a randomly chosen other particle
among the swarm. Also, c1,c2,c3 are acceleration coeffi-
cients and vr indicates a random velocity component. The
second term on the right side of Eq. (5) leads to a motion
of the particle towards its best position while the third term
leads to a repulsion between the particle and the best posi-
tion of a randomly chosen other particle in order to explore
new areas and to prevent the population to get stuck in a
local optimum. The fourth term generates noise in the
velocity of a particle to enhance the exploration to new
areas in the search space. Consequently, the RPSO can pre-
vent the swarm from being trapped in local minimum,
which would cause a premature convergence and lead to
fail in finding the global optimum. Instead, it is capable
of finding global optima in more complex search spaces
[20].

3. Mathematical formulation

3.1. Physical model

Fig. 2 shows an irregular quadrilateral enclosure which
is filled with an absorbing, emitting, scattering and gray
gas with ja and rs [10]. The non-radiative volumetric heat
source is _Q ¼ 5:0 kW=m3. The walls are gray and their tem-
peratures are all Tw = 1000 K. The spatial and angular
domains are discretized into (Nx � Ny) = 10 � 10 control
volumes and (Nh � N/) = 4 � 20 control angles corre-
sponding to S8 quadrature scheme [21]. The temperature
distribution in gray gas is determined from the following
energy equation [22]:

r � qr ¼ b0ð1� x0Þ 4pIb �
XN/

n¼1

XNh

m¼1

ImnDXmn

 !
¼ _Q ð6Þ
3.2. Direct problem

The radiative transfer equation governing radiation
intensity for a gray medium at any position r along a path
s through an absorbing, emitting, and scattering medium is
given by

1

b0

dIðr; sÞ
ds

þ Iðr; sÞ ¼ ð1� x0ÞIbðrÞ þ
x0

4p

�
Z

X0¼4p
Iðr; s0ÞUðs0 ! sÞdX0 ð7Þ

where b0 = ja + rs is the extinction coefficient, and
x0 = rs/b0 is the scattering albedo. U(s0 ? s) is the scatter-
ing phase function for radiation from incoming direction s0
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to scattered direction s. It is approximated by a finite series
of Legendre polynomial as

Uðs0 ! sÞ ¼ Uðcos WÞ ¼
XJ

j¼0

CjP jðcos WÞ ð8Þ

where Cj is the expansion coefficient, and J is the order of
the phase function. The boundary condition for a diffusely
emitting and reflecting wall can be written as follows:

Iðrw; sÞ ¼ ewIbðrwÞ þ
1� ew

p

Z
s0 �nw<0

Iðrw; s
0Þjs0 � nwjdX0 ð9Þ

where ew is the wall emissivity and nw is the unit normal
vector to the wall.

To derive the finite-volume discretization equation, Eq.
(7) is integrated over a control volume, DV and a control
angle, DXmn, as shown in Fig. 3. By assuming that the mag-
nitude of the intensity is constant but its direction varies
within the control volume and control angle given, the fol-
lowing finite-volume formulation can be obtained:
nn

en

sn

wn

(a) Control volume 
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m n′ ′
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Fig. 3. Schematics of finite-volume grids.
X
i¼e;w;n;s

Imn
i DAiDmn

ci ¼ b0ð�Imn þ Smn
R ÞPDV DXm ð10aÞ

where

Dmn
ci ¼

Z /nþ

/n�

Z hmþ

hm�
ðs � niÞ sin hdhd/ ð10bÞ

s ¼ sin h cos /ex þ sin h sin /ey ð10cÞ
ni ¼ nx;i ex þ ny;i ey ð10dÞ

Smn
R ¼ ð1� x0ÞIb þ

x0

4p

Z
X0¼4p

Im0n0Um0n0!mn dX0 ð10eÞ

DXm ¼
Z /nþ

/n�

Z hmþ

hm�
sin hdhd/ ð10fÞ

To relate the intensities on the control-volume surfaces to a
nodal one, the step scheme, which is not only simple and
convenient, but also ensures positive intensity, is adopted.
Then, the final discretized equation for FVM is obtained by

amn
P Imn

P ¼
X

I¼E;W ;S;N

amn
I Imn

I þ bmn
P ð11aÞ

amn
I ¼ �DAiDmn

ci;in ð11bÞ
amn

P ¼
X

I¼e;w;s;n

DAiDmn
ci;out þ b0;PDV DXmn ð11cÞ

bmn
P ¼ b0Smn

R

� �
P
DV DXmn ð11dÞ

where

Dmn
ci;out ¼

Z
DXmn
ðs � niÞdX s � ni > 0 ð11eÞ

Dmn
ci;in ¼

Z
DXmn
ðs � niÞdX s � ni < 0 ð11fÞ

A more detailed derivation of the transformations can be
found in Refs. [10,22].
4. Results and discussion

4.1. Inverse analysis procedure

In this inverse analysis, the following cases are carried
out to verify the performance of RPSO algorithm as an
inverse method and to compare its characteristics with
HGA and PSO:

(a) Estimation of four wall emissivities ew,
(b) Simultaneous estimation of ja and rs of a gray

medium,
(c) Simultaneous estimation of ew, ja and rs.

These parameters are regarded as unknown while the
other values such as the temperatures at boundaries, scat-
tering phase function and non-radiative volumetric heat
source are assumed to be known. They can be estimated
by minimizing objective function, which is expressed by
the sum of square errors between estimated and measured
temperatures at only four measurement data positions as in
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Fig. 2. The objective function for the present inverse radi-
ation analysis is defined by

f ¼
X4

i¼1

ðT i;measured � T i;estimatedÞ2 ð12Þ
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where Ti,measured is the measured temperature from direct
problem while Ti,estimated is estimated from inverse analysis
with current estimates of the unknown parameters at the
measurement location. The number and the position of
measured points are selected not only to avoid averaging
error effect but also to estimate the parameters effectively
as explained in [10].

To minimize objective function, Eq. (12), HGA, PSO
and RPSO are adopted and then their estimation results
are compared. Because the influence of choosing parame-
ters depends on the combination of their values and actu-
ally it is difficult to consider all the values in given ranges
one by one, the best performances obtained from each
algorithm are presented as representative ones to yield
more clear conclusions. The parameters used for each
method, such as w,ci in RPSO, probabilities of crossover
and mutation (Pc,Pm) in HGA, are optimized to obtain
the best results from several trials by adjusting them in
proper ranges (for example, [0.5,1.5] for w,ci and
[0.1,0.9] for Pc,Pm). Especially for RPSO and PSO, the rec-
ommended ranges of these parameters referred to Clerc’s
constriction method [23] are as follows:

w ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

q����
����
; where / ¼ c1 þ c2 > 4:0

ð13Þ
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Fig. 4. Comparison of computation time among HGA, PSO and RPSO
algorithms (case 1).
4.2. Estimation of wall emissivities (cases 1 and 2)

In the first problem, two cases are considered to validate
the feasibility of RPSO algorithm for the estimation of four
wall emissivities. For case 1, the present estimations
obtained by RPSO are compared with the previous results
by Kim et al. with HGA [10] to verify if RPSO is an effi-
cient method for inverse radiation analysis. In this case,
ja = 0.5 m�1 and rs = 0.5 m�1, respectively, while the
exact values of unknown ew’s are all set to 0.7.

First of all, the effect of population (swarm) size on com-
puting time with RPSO is compared with HGA and PSO
under the same numerical conditions in Ref. [10]. Namely,
the computing time is measured for five population sizes
such as 10, 50, 100, 150, and 200 after 100 iterations with
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Fig. 5. Comparison of performance among HGA, PSO and RPSO
algorithms (case 1).
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an Intel P4 2 GHz CPU. As a result, it can be found that
the computing time with three algorithms increase directly
proportional to population size. However, PSO and RPSO
require much shorter time to complete whole iterations
than HGA at the same population size in Fig. 4. This is
because the search method based on PSO has a much sim-
pler process in finding optimal values rather than the com-
plex operations of GA-based method.

Next, another 100 iterations are conducted to compare
the best fitness of objective function, Eq. (12), when RPSO,
PSO, and HGA methods are applied with a same popula-
tion size of 10. Fig. 5(a) shows that the best fitness reach
the order of 1 � 10�7 during only about 50 iterations for
RPSO and 65 iterations for PSO in a rapid search for a glo-
bal optimum while HGA converges slowly to the order of
1 � 10�4 even though all 100 iterations are completed. In
addition, the estimation process for unknown ew3, against
iteration numbers are investigated to examine performance
of each algorithm as shown in Fig. 5(b). While RPSO and
PSO are found to converge quickly to 0.7, HGA searches
very slowly especially near the exact value without fluctua-
tions even though all three algorithms start with the same
initial value 0.86. This fact results from their fundamental
principles in the search mechanism. The RPSO as well as
PSO has the superior ability of fine local tuning near the
optimum value rather than the GA-based method. On
the other hand, the whole swarm in PSO and RPSO
searches for the better and better solutions following one
particle close to a global optimum. Consequently, the best
fitness of objective function can converge to the lower
order of magnitude rapidly when RPSO and PSO are
employed. Similar tendencies are obtained for case 2 with
different emissivity values 0.3 instead of 0.7 for top and
bottom walls. As shown in Fig. 6, the RPSO and PSO out-
perform the HGA in searching for exact values of param-
eters and the convergence speed like case 1.

The final inverse estimations for cases 1 and 2 are sum-
marized in Table 1. The relative errors and their averaged
values are presented to compare the accuracy of estimated
results and the computing times until the best fitness of
objective function reaches less than 1 � 10�6. For case 1,
Intel P4 2 GHz CPU is used, whereas Intel Core 2 Duo
2 GHz CPU is used for case 2 to reduce time. It can be
found that all algorithms comparatively estimate ew close
to real solutions under no measurement error condition.
Especially, RPSO calculates the most accurate values
within the shortest time when comparing the accuracy of
results and the computing time.

4.3. Simultaneous estimation of an absorption and a

scattering coefficients (cases 3 and 4)

To verify RPSO in various problems, another two cases
are considered for simultaneously estimating ja,rs of a
gray medium. The ew’s are all known as 0.7, and the exact
values of unknown ja,rs are all 0.5 for case 3, while they
are 5.0 and 2.5 for case 4, respectively.
For both cases, Fig. 7 shows that the best fit results by
all three methods rapidly reach less than the order of
1 � 10�6 within the number of 30 iterations. In particular,
RPSO and PSO converge further to less than the order of
1 � 10�7 with one more iteration after reaching the order
of 1 � 10�6. For HGA, the convergence speed and the
magnitude of the best fitness are greatly improved com-
pared with cases 1 and 2. However, it can be found that
the best fitness remains in a premature convergence to
6 � 10�6 order level, which means the individuals do not
continue to search for better solutions until 95 iterations
as shown in Fig. 7(a). Also, the required iterations for less
than the order of 1 � 10�6 in HGA are not uniform
depending on the unknown parameters such that 14 itera-
tions for ja = 0.5 m�1, rs = 0.5 m�1 and 25 iterations for



Table 1
Comparison of estimation results for inverse wall emissivity

Parameter Case 1 (ew1,2,3,4 = 0.7) Case 2 (ew1,2 = 0.7, ew3,4 = 0.3)

HGAa [10] PSO RPSO HGAa PSO RPSO

ew1 0.6969 0.7000 0.6999 0.7047 0.7001 0.7001
(Rel. error %) (0.44) (0.0) (0.01) (0.67) (0.01) (0.01)
ew2 0.7006 0.7001 0.7000 0.7001 0.7001 0.7001
(Rel. error %) (0.09) (0.01) (0.0) (0.01) (0.01) (0.01)
ew3 0.7000 0.6999 0.7000 0.2959 0.2999 0.2999
(Rel. error %) (0.0) (0.01) (0.0) (1.37) (0.03) (0.03)
ew4 0.7027 0.7002 0.7001 0.3039 0.2999 0.3000
(Rel. error %) (0.39) (0.03) (0.01) (1.30) (0.03) (0.0)
Averaged Rel. error (%) 0.23 0.01 0.005 0.84 0.02 0.01
Computational time (s) 629.2 127.9 71.3 191.6 94.4 71.7

a Measured after 100 iterations.
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Fig. 7. Comparison of best fitness among HGA, PSO and RPSO
algorithms (cases 3 and 4).
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Fig. 8. Comparison of absorption coefficient estimations (cases 3 and 4).

K.H. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 2772–2783 2779



ion

60 80

Iteration

S
ca

tt
er

in
g

co
ef

fic
ie

nt
σ s

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HGA
PSO
RPSO

(a) Case 3 ( sσ = 0.5 m-1)

It

40

Iteration

S
ca

tt
er

in
g

co
ef

fic
ie

nt
σ s

0 20 40 60 80 100
1.5

2

2.5

3

3.5

HGA
PSO
RPSO

(b) Case 4 ( sσ = 2.5 m-1)

Fig. 9. Comparison of scattering coefficient estimations (cases 3 and 4).
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Fig. 10. Comparison of performance among HGA, PSO and RPSO
algorithms (case 5).
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ja = 5.0 m�1, rs = 2.5 m�1. Variation of each ja and rs

against iteration is presented in Fig. 8 for case 3 and in
Fig. 9 for case 4. It can be clearly seen that both RPSO
and PSO search faster than HGA, even though they start
Table 2
Comparison of estimation results for inverse absorption and scattering coeffic

Parameter Case 3 (ja = 0.5, rs = 0.5)

HGA PSO

ja 0.5000 0.5000
(Rel. error %) (0.0) (0.0)
rs 0.4980 0.5003
(Rel. error %) (0.40) (0.06)
Averaged Rel. error (%) 0.20 0.03
Computational time (s) 17.3 22.3
with initial values located far from the solutions. Conse-
quently, it can be concluded that the search capability for
global optimum as well as the fine local tuning near the
ients

Case 4 (ja = 5.0, rs = 2.5)

RPSO HGA PSO RPSO

0.5000 4.9968 5.0215 4.9918
(0.0) (0.06) (0.43) (0.16)
0.4984 2.4942 2.5102 2.4967
(0.32) (0.23) (0.41) (0.13)
0.16 0.15 0.42 0.15
13.9 143.4 58.8 55.1



K.H. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 2772–2783 2781
solutions of RPSO and PSO are comparatively better than
those of HGA.

On the other hand, Park and Yoon [24] introduced a
two-stage estimation process by the CGM to estimate ja

and rs at the same time in 3D participating media radia-
tion–conduction. Because these parameters are strongly
coupled in the sensitivity equations and there is a great dif-
ference between the sensitivity values of temperature with
respect to each parameter, the simultaneous estimation of
these parameters is very difficult unless the initial values
are chosen near the exact values. Therefore, they obtain
converged estimation of ja with assumed rs at first stage,
and then estimate those two parameters simultaneously.
While this method has some drawbacks such that a prepos-
terous value can be obtained depending on the assumption
of initial values and the estimation process is too compli-
cated, the PSO-based methods in the present study is able
to easily find solutions without such difficulty.

The final estimations for cases 3 and 4 with three algo-
rithms until the best fitness of objective function reaches
less than 1 � 10�6 using Intel Core 2 Duo 2 GHz CPU
are summarized in Table 2. It reveals for both cases that
RPSO consistently estimates the relatively accurate opti-
mum values within the shortest time among other methods
even with poor initial values.

4.4. Simultaneous estimation of emissivities, absorption and

scattering coefficients (cases 5 and 6)

Finally, a simultaneous estimation of ew, ja and rs is con-
sidered to verify the performance of RPSO in the multi-
parameter inverse problem. While two emissivities of side
walls ew1, ew2 are unknown for case 5, all four ew are to be
predicted for case 6. The exact values of all ew’s are 0.7
and those of unknown ja and rs are 0.5 m�1 for both cases.
Table 3
Comparison of estimation results for inverse wall emissivity, absorption and s

Parameter Case 5 (ew1,2 = 0.7, ja = 0.5, rs = 0.5)

HGAa PSO RP

ew1 0.6913 0.7013 0.6
(Rel. error %) (1.24) (0.19) (0.
ew2 0.6952 0.7008 0.6
(Rel. error %) (0.69) (0.11) (0.
ew3 – – –
(Rel. error %)
ew4 – – –
(Rel. error %)
ja 0.5025 0.4995 0.5
(Rel. error %) (0.50) (0.10) (0.
rs 0.5393 0.4851 0.4
(Rel. error %) (7.86) (2.98) (0.
Averaged Rel. error (%) 2.57 0.32 0.0
Computational time (s) 141.3 61.6 59

a Measured after 100 iterations.
b Measured after 3000 iterations.
It can be seen from Fig. 10(a) that the best fitness of
PSO converges slowly after 50 iterations even though it
reaches very close to the order of 1 � 10�6 quickly among
other methods. The main reason exists in the drawback of
PSO such that even if it falls into a premature convergence,
thereafter it remains in the local optimum as explained
above while RPSO continues to converge to less than the
order of 1 � 10�7 searching for better solutions. This leads
to yielding a great improvement in accuracy of estimation
results by RPSO as listed in Table 3. As shown in
Fig. 10(b), the predictions by RPSO and PSO converge
more quickly to the exact value 0.7 of ew2 than by HGA.

For case 6 with a total of six unknown parameters with
ew, ja and rs, it is found that all algorithms fail in estimat-
ing exact solutions due to a lack of physical information
with four temperature measurements. Therefore, the mea-
surement points are increased to nine, whereas a number
of iterations are extended from 100 to 3000. Thereby,
inverse solutions can be obtained from all three methods
as shown in Fig. 11 and in Table 3. Similar to previous
cases, the results show an excellent performance by RPSO
compared with the other methods in convergence rate as
well as estimation accuracy. On the other hand, HGA is
observed not to outperform PSO-based methods for both
cases, and shows a very slow convergence when the number
of unknown parameters is increased. The result clearly
shows that the performance of HGA is the highest with
two unknown ew’s, but it exhibits a distinguished drop in
efficiency as the number of unknown ew is higher than
two. A similar result was also observed by Verma and Bal-
aji [25] who found that GA is not very efficient for simulta-
neous estimation of more than two parameters unless there
is a fair idea of ranges in which the parameters may lie
when applied to a combined conduction–radiation problem
from 1D plane parallel with participating medium.
cattering coefficients

Case 6 (ew1,2,3,4 = 0.7, ja = 0.5, rs = 0.5)

SO HGAb PSO RPSO

997 0.7012 0.7007 0.6993
04) (0.17) (0.10) (0.10)
999 0.7006 0.7006 0.6994
01) (0.09) (0.09) (0.09)

0.7037 0.7006 0.6994
(0.53) (0.09) (0.09)
0.7032 0.7005 0.6996
(0.46) (0.07) (0.06)

001 0.4988 0.4997 0.5003
02) (0.24) (0.06) (0.06)
997 0.5058 0.5011 0.4989
06) (1.16) (0.22) (0.22)
8 0.44 0.11 0.10

.6 5053.1 2205.6 2087.4



Table 4
Comparison of measurement errors using RPSO for different standard deviati

Parameter Case 1 (ew1,2,3,4 = 0.7) Case 3 (ja =

rst = 0.05 rst = 0.1 rst = 0.05

ew1 0.6863 0.6726 –
(Rel. error %) (1.96) (3.91)
ew2 0.6955 0.6909 –
(Rel. error %) (0.64) (1.30)
ew3 0.6970 0.6940 –
(Rel. error %) (0.43) (0.86)
ew4 0.7179 0.7359 –
(Rel. error %) (2.56) (5.13)
ja – – 0.4992
(Rel. error %) (0.16)
rs – – 0.4711
(Rel. error %) (5.78)
Averaged Rel. error (%) 1.40 2.80 2.97
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Fig. 11. Comparison of performance among HGA, PSO and RPSO
algorithms (case 6).

2782 K.H. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 2772–2783
To examine the effect of measurement errors on accu-
racy of the estimation using RPSO, measurement errors
are simulated by adding an error term as follows [10]:

ðT iÞmeasured ¼ ðT iÞexact þ rstf; i ¼ 1–9 ð14Þ

where f is a normal distributed random variable with zero
mean and unit standard deviation. rst, which is a standard
deviation of measured temperatures for a measured error c
at 99% confidence, is determined by

rst ¼
T exact � c

2:576
ð15Þ

Table 4 shows the accuracy of estimations with various
standard deviations for three cases. It shows that increasing
rst decreases the accuracy of the estimations. But it is
observed that the satisfied estimation of unknown parame-
ters can be obtained by RPSO algorithm.
5. Conclusions

The inverse radiation analysis is carried out for esti-
mating the radiative parameters for an absorbing, emit-
ting and scattering media in a 2D irregular geometry
with diffusely emitting and reflecting opaque boundaries
from the temperature measurements. The FVM is
employed to solve the radiative transfer equation of the
direct problem. In order to verify the feasibility and the
performance of the RPSO, which is one of global
search-based methods, combined problems of unknown
ew, ja and rs are inversely estimated. A total of six cases
are investigated depending on the combination of
unknown parameters to compare the overall characteris-
tics of RPSO with PSO and HGA. The best results
obtained from each algorithm are presented as representa-
tive ones to yield more clear conclusions because values
obtained are not different much depending on the selec-
tion of parameters in given ranges. Based on the results,
it is sufficiently observed that the RPSO has better com-
putational performance than the other two algorithms.
Moreover, it shows a robust performance even for
ons

0.5, rs = 0.5) Case 6 (ew1,2,3,4 = 0.7, ja = 0.5, rs = 0.5)

rst = 0.1 rst = 0.05 rst = 0.1

– 0.6981 0.6990
(0.27) (0.14)

– 0.7035 0.7097
(0.50) (1.39)

– 0.7012 0.7047
(0.17) (0.67)

– 0.7263 0.7554
(3.76) (7.91)

0.4984 0.4963 0.4915
(0.32) (0.74) (1.70)
0.4422 0.4878 0.4803
(11.56) (2.44) (3.94)
5.94 1.31 2.63
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simultaneous estimation of strongly-coupled multi-param-
eter environment. Finally, the effects of measurement
errors on the accuracy of estimation are carefully exam-
ined. Consequently, it can be concluded that the RPSO
has been successfully verified as an effective method for
the inverse radiation analysis.
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[6] J.C. Bokar, M.N. Özisik, Inverse analysis for estimating the time
varying inlet temperature in laminar flow inside a parallel plate duct,
Int. J. Heat Mass Transfer 38 (1995) 39–45.

[7] Y.K. Hong, S.W. Baek, Inverse analysis for estimating the unsteady
inlet temperature distribution for two-phase laminar flow in a
channel, Int. J. Heat Mass Transfer 49 (2006) 1137–1147.

[8] K.W. Kim, S.W. Baek, H.S. Ryu, Comparison of optimization
techniques for an inverse radiation boundary problem, Int. Conf.
Comput. Methods (2004) 15–17.

[9] H.Y. Li, C.Y. Yang, A genetic algorithm for inverse radiation
problems, Int. J. Heat Mass Transfer 40 (1997) 1545–1549.
[10] K.W. Kim, S.W. Baek, M.Y. Kim, H.S. Ryu, Estimation of
emissivities in a two-dimensional irregular geometry by inverse
radiation analysis using hybrid genetic algorithm, J. Quant. Spec-
trosc. Radiat. 87 (2004) 1–14.

[11] J.C. Becceneri, S. Stephany, H.F. de Campos Velho, A.J. Silva Neto,
Solution of the inverse problem of radiative properties estimation
with particle swarm optimization techniques, Inverse Probl. Eng.
Seminar (IPES) (2006).

[12] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer, New York, 1999.

[13] S. Joachim, Parallel Genetic Algorithms: Theory and Applications,
IOS Press, Amsterdam, 1993.

[14] K.F. Man, K.S. Tang, S. Kwong, Genetic Algorithms: Concepts and
Designs, Springer, London, 1999.

[15] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceed-
ings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1945.

[16] R.C. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence
PC Tools, Academic Press, Boston, 1996.

[17] M. Clerc, Particle Swarm Optimization, ISTE Ltd., London,
2006.

[18] E. Ozcan, C. Mohan, Particle swarm optimization: surfing the waves,
in: Proceedings of the Congress on Evolutionary Computation, 1999,
pp. 1939–1944.

[19] K. James, C.E. Russell, S. Yuhui, Swarm Intelligence, Morgan
Kaufman, San Francisco, 2001.

[20] O. Urfalioglu, Robust estimation of camera rotation, translation and
focal length at high outlier rates, Comput. Robot Vis. Proc. (2004)
464–471.

[21] J. Liu, H.M. Shang, Y.S. Chen, T.S. Wang, Prediction of radiative
transfer in general body-fitted coordinates, Numer. Heat Transfer,
Part B 31 (1997) 423–439.

[22] S.W. Baek, M.Y. Kim, J.S. Kim, Nonorthogonal finite-volume
solutions of radiative heat transfer in a three-dimensional enclosure,
Numer. Heat Transfer, Part B 34 (1998) 419–437.

[23] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and
convergence in a multidimensional complex space, IEEE Trans. Evol.
Comput. 6 (2002) 58–73.

[24] H.M. Park, T.Y. Yoon, Solution of the inverse radiation problem
using a conjugate gradient method, Int. J. Heat Mass Transfer 43
(2000) 1767–1776.

[25] S. Verma, C. Balaji, Multi-parameter estimation in combined
conduction–radiation from a plane parallel participating medium
using genetic algorithms, Int. J. Heat Mass Transfer 50 (2007)
1706–1714.


	Inverse radiation analysis using repulsive particle swarm optimization algorithm
	Introduction
	Principle of algorithm
	Hybrid genetic algorithm (HGA)
	Particle swarm optimization (PSO)
	Repulsive particle swarm optimization (RPSO)

	Mathematical formulation
	Physical model
	Direct problem

	Results and discussion
	Inverse analysis procedure
	Estimation of wall emissivities (cases 1 and 2)
	Simultaneous estimation of an absorption and a scattering coefficients (cases 3 and 4)
	Simultaneous estimation of emissivities, absorption and scattering coefficients (cases 5 and 6)

	Conclusions
	Acknowledgement
	References


